
COURSE DESCRIPTION: C++ For Experienced Programmers

Duration: 5 days Format: Lecture/Workshops Maximum Size: limited

Overview:
This course teaches the student how to write high quality, internally documented, well-structured C++ programs. Students will learn
how C++ supports software engineering principles, such as abstraction, information hiding, localization, and modularity, and how to
apply these principles in software development. Students will see how C++ incorporates and improves upon ISO C, then adds features
supporting object–oriented design & programming, error management, and templates. The student will gain experience with syntax and
semantics of the ISO standard C++ language. Finally, we will look at how the new Standard Library reduces the amount of code that
needs to be developed and improves reliability through re–use.

After this course a student should be able to:

❑ Build C++ programs using object-oriented programming
❑ Avoid common pointer problems
❑ Use C++ to support software re–use efforts
❑ Use C++ to develop more reliable programs
❑ Contribute to the design of C++ software applications

In the lectures, extensive examples will be used to illustrate the new features of C++. In hands-on workshops, the students will practice
using the C++ features in typical C++ development environments.

Target Population: Software development personnel, including their management and QA engineers, who intend to program in C++, design
for C++, or review C++ code.

Prerequisites: Programming experience, familiarity with a high–level language.

Materials: Each student will receive a copy of all lecture materials, lab notes, and reference materials.

Topics:

• Introduction
− History of C++
− Overview of C++ features

− Basic Constructs
− Programs
− Compilation units
− Preprocessor Directives
− Declarations
− Built–in types
− Pointers, References, Arrays, & Strings
− Structures & Unions
− Constants & Literals
− Quick look at Stream I/O
− Expressions & Statements

− Functions
− Function prototypes
− Default parameters
− Parameter passing

− Organizing Code
− Files
− Namespaces

− Classes
− Data abstraction
− Encapsulation
− Information hiding
− Member data & function
− Inline functions
− Constant & Static members
− Constructors & destructors
− Friends

− Derived Classes
− Single inheritance
− Multiple inheritance
− Virtual inheritance
− Polymorphism
− Function overloading
− “Run–time” binding
− Virtual functions

− Base class access control
− Run–time type identification

− Operator Overloading
− Templates

− Template classes
− Template functions

− Exception Handling
− Catch
− Throw
− Try

− C++ Standard Libraries Overview
− Standard Template Library (STL)

− Containers
− Utilties
− Iterators
− Algorithms

− Strings
− I/O

− Basic streams
− File I/O with streams
− Stream class hierarchy

